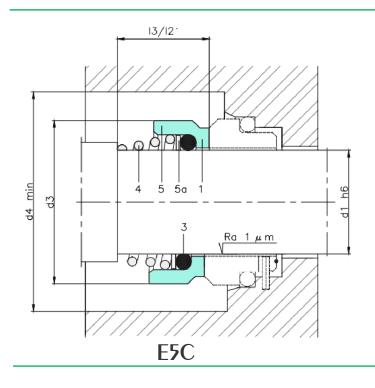
PUMP MECHANICAL SEAL

COMPONENTS

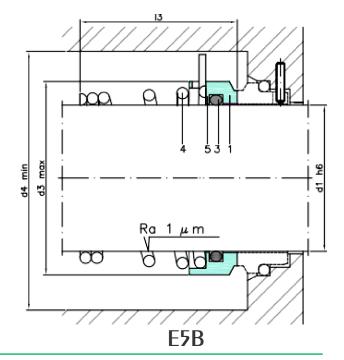

- 1 Rotating contact surface
- 3 O-rings
- 4 Springs 5
 - Metal frame
- 5a Rings

SECTOR

- · Pharmaceutical industry
- Power plant technology
- Pulp and paper industry
- Water and waste water technology

E5C

- Mining industry
- Food and beverage industry
- Sugar industry
- · Contaminated, abrasive and solids containing media
- Thick juice
- (70 ... 75 % sugar content)
- · Raw sludge, sewage slurries
- Raw sludge pumps
- Thick juice pumps
- · Conveying and bottling of dairy products


OPEARTING RANGE

Shaft diameter: d1 = 14 ... 100 mm (0.55" ... 3.94") Pressure: p1 = 25 bar (363 PSI) Temperature: t = -50 °C ... +220 °C (-58 °F ... +428 °F) Sliding velocity: vg = 20 m/s (66 ft/s)Axial movement: d1 = ... 25 mm: ±1 mm d1 = 28 ... 63 mm: ±1.5 mm d1 = from 65 mm: ±2 mm

DESCRIPTION

Conical mechanical seal with an extremely versatile and functional design. The rotating part of the seal can be combined with a large variety of stationary parts, which offers a wide range of combinations.

Its structure allows secondary seals made of different materials to be used: FKM, Aflas®, FFKM, FEP, NBR, HNBR and materials complying with special standards such as FDA, USP, EC, etc.

SEAL FACE MATERIALS.

Antimony impregnated carbon graphite Resin impregnated carbon graphite Sintered silicon carbide Reaction bonded silicon carbide Tungsten carbide

FEATURES

- · For unstepped shafts
- Single seal
- Balanced
- Independent of direction of rotation
- Encapsulated rotating spring

ADVANTAGE

- · Especially designed for solids containing and highly viscous media
- · Springs are protected from the product
- Rugged and reliable design
- No damage of the shaft by dynamically loaded O-Ring
- Universal application
- · Variant for operation under vacuum available
- · Variant for sterile operation available

Shaft	Rotary part			
mm	d3	d4	13	121
10	19	24	15,5	15,5
12	21	26	16	15,5
15	24	29	-	15,5
18	29	34	19,5	18,5
22	33	38	21,5	21,5
25	36	41	26,5	24,5
28	40	45	26,5	24,5
32	46	51	28,5	28
35	49	54	28,5	28
40	56	61	36	34
43	59	64	38,5	-
48	64	69	46	42
53	69	74	47	-
58	76	81	55	50
63	83	88	55	-
68	88	93	55	53
75	98	103	62	55
80	100	105	61.8	58

DIMENSIONS IN MM

Dimensions subject to changes or modifications.

www.etannorengineers.com